3. 单一职责
3.1 Decorator(装饰模式)
3.1.1 动机(Motivation)
- 在某些情况下我们可能会“过度地使用继承来扩展对象的功能”,由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性; 并且随着子类的增多(扩展功能的增多),各种子类的组合(扩展功能的组合)会导致更多子类的膨胀。
- 如何使“对象功能的扩展”能够根据需要来动态地实现?同时避免“扩展功能的增多”带来的子类膨胀问题?从而使得任何“功能扩展变化”所导致的影响将为最低?
3.1.2 模式定义
动态(组合)地给一个对象增加一些额外的职责。就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码 & 减少子类个数)。 ——《设计模式》GoF 要点总结
- 通过采用组合而非继承的手法, Decorator模式实现了在运行时动态扩展对象功能的能力,而且可以根据需要扩展多个功能。 避免了使用继承带来的“灵活性差”和“多子类衍生问题”。
- Decorator类在接口上表现为is-a Component的继承关系,即Decorator类继承了Component类所具有的接口。 但在实现上又表现为has-a Component的组合关系,即Decorator类又使用了另外一个Component类。
- Decorator模式的目的并非解决“多子类衍生的多继承”问题,Decorator模式应用的要点在于解决“主体类在多个方向上的扩展功能”——是为“装饰”的含义。
3.1.3 代码分析
代码最初版本:
//业务操作,定义一个流操作,基类
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}// 析构必须是虚函数
};
//主体类,继承Stream
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
// 网络流,继承Stream
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
// 内存流,继承Stream
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作;加密
class CryptoFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
}
};
class CryptoNetworkStream : public NetworkStream{
public:
virtual char Read(int number){
//额外的加密操作...
NetworkStream::Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
NetworkStream::Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
NetworkStream::Write(data);//写网络流
//额外的加密操作...
}
};
class CryptoMemoryStream : public MemoryStream{
public:
virtual char Read(int number){
//额外的加密操作...
MemoryStream::Read(number);//读内存流
}
virtual void Seek(int position){
//额外的加密操作...
MemoryStream::Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
MemoryStream::Write(data);//写内存流
//额外的加密操作...
}
};
// 又是额外操作
class BufferedFileStream : public FileStream{
//...
};
class BufferedNetworkStream : public NetworkStream{
//...
};
class BufferedMemoryStream : public MemoryStream{
//...
};
class CryptoBufferedFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
//额外的缓冲操作...
}
virtual void Write(byte data){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
//额外的缓冲操作...
}
};
void Process(){
//编译时装配
CryptoFileStream *fs1 = new CryptoFileStream();
BufferedFileStream *fs2 = new BufferedFileStream();
CryptoBufferedFileStream *fs3 =new CryptoBufferedFileStream();
}
上述代码的问题在于:
- 过多的继承,使得子类拓展会爆炸,其实上面的加密操作,分别对文件流,网络流和内存流,这一部分是可以抽象出来。
- 上述代码,实际上有许多重复代码的地方
代码版本2:
//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
// 扩展操作
// 这里将扩展操作使用Decorator设计模式将扩展操作抽象独立出来。
// 三个子类变为一个子类,用组合代替继承
// 这里既继承了Stream 有组合了Stream,大多数都是Decorator设计模式
// 这是一种 is a 和 has a
class CryptoStream: public Stream {
Stream* stream;//...
public:
CryptoStream(Stream* stm):stream(stm){
// 构造函数,使用输入参数stm初始化
}
// 一下是继承Stream重写的纯虚函数
virtual char Read(int number){
//额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
};
// 同理扩展操作Buffer也可以采用上面的思路
class BufferedStream : public Stream{
Stream* stream;//...
public:
BufferedStream(Stream* stm):stream(stm){
}
//...
};
// 在上述被调用时,版本1 的静态就变成了动态
void Process(){
//运行时装配
FileStream* s1=new FileStream();
CryptoStream* s2=new CryptoStream(s1);// 使用s1 对加密初始化
BufferedStream* s3=new BufferedStream(s1);
BufferedStream* s4=new BufferedStream(s2);
}
版本3:
//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作
// 由于两个子类有相同的成员Stream*,所以这个成员要往上提
// 抽象 DecoratorStream,符合面向设计对象原则
DecoratorStream: public Stream{
protected:
Stream* stream;//...
DecoratorStream(Stream * stm):stream(stm){
}
};
class CryptoStream: public DecoratorStream {
public:
CryptoStream(Stream* stm):DecoratorStream(stm){
}
virtual char Read(int number){
//额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
};
class BufferedStream : public DecoratorStream{
Stream* stream;//...
public:
BufferedStream(Stream* stm):DecoratorStream(stm){
}
//...
};
void Process(){
//运行时装配
FileStream* s1=new FileStream();
CryptoStream* s2=new CryptoStream(s1);
BufferedStream* s3=new BufferedStream(s1);
BufferedStream* s4=new BufferedStream(s2);
}